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Abstract—This contribution presents a graph based approach
for modelling the effects of both attacks against computer
networks and response measures as reactions against the attacks.
Certain properties of the model graphs are utilized to quantify
different response metrics which are well-kown from the prag-
matic view of network security officers.

Using these metrics, it is possible to (1) quantify practically
relevant properties of a response measure after its application,
and (2) estimate these properties for all available response
measures prior to their application. The latter case is the basis
for the selection of an appropriate reaction to a given attack.

Our graph-based model is similar to those used in software
reliability analysis and was designed for a scalable granularity
in representing properties of the network and its components to
be protected. Different examples show the applicability of the
model and the resulting metric values.

I. INTRODUCTION

Attacks against computer systems and networks in their dif-
ferent characteristics are omnipresent and thus not surprising
anymore. Almost every network that connects computers has
been facing processes of reconnaissance, penetration, stealing
or damaging information in the past, with more or less serious
subsequent effects.

When an attack has been indicated by a monitoring system,
network security officers need to select an appropriate response
to the attack carefully. The way how to define this ’appropri-
ateness’ heavily depends on the properties and the deployment
objective of the network and its components. There is only a
small number of approaches selecting response mechanisms
automatically; this is mainly caused by too many possibilities
to damage a system rather than mitigating the effects of an
attack.

This contribution proposes an approach for modelling the
systems to be secured and the effects of attacks and responses
using directed graphs, comparable to data structures used
in software reliabiliy analysis. Quantified properties of these
graphs are used as metrics for assessing the value of a response
mechanism. These metrics are aligned to the pragmatic view
of network security officers, and they include the original
deployment objective of the network.

1Published in: Proc. of the 3rd IEEE Workshop on Network Security, held
in conjunction with 32th IEEE Conference on Local Computer Networks,
Dublin, Oct. 2007.

II. RELATED WORK

The careful selection of reaction mechanisms to attacks
against computer networks has always been a challenging field
of work. Different contributions have been dealing with cost
models in the area of intrusion detection and response. A
general overview on existing work in the area of intrusion
response has been published by Stakhanova et al. in [SBW07].

In her book [Den99], Denning stated that cost analysis in
the area of IT security – and risk analysis in general – simply
cannot be seen as an exact science, since in many cases,
relevant values cannot be quantified at all. Northcutt describes
in [Nor99] the (informal) process of risk analysis in IT systems
and defines the value of resources by their criticality as well
as their lethality. These values are assigned in an increasing
order to, e.g., Windows Workstations, UNIX Workstations,
Web Servers, DNS Servers up to Firewalls/Paketfilters and
Routers. Parts of this approach have been included during the
design process of the model described in this paper.

Lee et al. [LFM+02] identified different operational costs
as metrics for selecting intrusion response measures. Starting
with a taxonomy of attacks that have been given by a reference
dataset, empirical costs for the attack damage and reactions
have been defined. The damage of a resource is defined as
product of its criticality and its (estimated) complexity of the
reaction. The main focus of this work is more on reducing
costs for the security event detection.

Toth and Kruegel [TC02] looked at the effects of a reac-
tion in a network model that considers resources (applica-
tions/services) as well as users, the network topology as well
as access control (firewall rules). In general, for all mentioned
model components, a capability value is defined. Also, the
respective inter-dependencies of resources have been modeled;
so called ’dependency trees’ express these relationships. By
the increase of resource availability, the value of response
measures is estimated. Our approach extends this idea by using
general directed graphs with different kinds of dependencies
between resources and by deriving quantitative differences
between system states from these graphs. Other approaches
are also relying on resource graphs, but for different purposes:

Balepin et al. [BMR+03] extended the idea of representing



services and their inter-dependencies in a graph for selecting
responses through creating a resource type hierarchy, so that
every service type has common response measures associated
with it. Response sequences need to be optimal for each ser-
vice node, i.e every response step needs to produce maximum
benefit at minimum costs.

ADEPTS [WFB+07] is a complex framework for determin-
ing automated responses against attacks, based on two types
of graphs: a service graph that expresses inter-dependencies
between available services, and an attack graph that represents
possible attack states and their probabilities. Responses are se-
lected based on their effectiveness during previous applications
in the past. This framework has been successfully applied and
evaluated in an E-Commerce application context. However,
we believe that our approach for determining the value of a
countermeasure reflects the dynamics of the situational context
more accurate.

Our model has a lot of similarities to software reliability
analysis methodologies, such as the ’Scenario-Based Relia-
bility Estimation’ (SBRE, see e.g. [YCA04], [YA02]), where
comparable data structures and algorithms are deployed. Our
approach basically broadens the application area for these
techniques to the networking context.

III. THE PRAGMATIC VIEW:
HOW SECURITY OFFICERS CHOOSE RESPONSES

Network security officers (NSOs) are usually equipped with
more or less complex diagnosis systems and applications, such
as network management systems (NMS), intrusion detection
systems (IDS), intrusion prevention systems (IPS) and addi-
tional tools like administrator consoles.

Conventionally, an NSO picks a selection of the available
response measures together with the appropriate parameters
and triggers it manually, at the console of the penetrated
systems or even remotely over the network. When choosing
the response measures and their parameters, NSOs often take
the following factors into account:

• Expected Response Success
Clearly, the most important aspect is the expected success
of a measure. Negative side effects (e.g. unwanted partial
inavailability) need to be considered here. As long as a
reaction does not likely have a positive effect (whatever
this means in the according application scenario) on the
network, it will not be chosen. This also holds for the
response parameters.

• Expected Response Effort
Maybe the second most important aspect is the estimated
effort (or costs) that is needed for performing response
measures. If two sets of possible responses have the same
expected success, most probably the set will be selected,
which is easier to apply.

• Expected Response Error-Proneness
The (subjective) probability of failing when performing
a response measure is also very important. It cannot
ultimately be precluded that a wrong selection of response
measures and their parameters will put the monitored

system into a state worse than caused by the attack itself.
So, in most cases, the complication-less alternative would
be selected by an NSO.

• Expected Response Durability
The expected duration of the response effects is probably
an aspect that is less important than the other three
mentioned above. If two alternative sets of responses
promise comparable values for the other aspects, most
likely the one with the longer expected durability will
be chosen, i.e. the expected time period after which
additional actions will get necessary for keeping the
system healthy.

Of course, there are more aspects to be considered by NSOs,
but these strongly depend on the corresponding deployment
scenario.

If connected with access control enforcement points (e.g.
firewalls, packet filters), some up-to-date IDS/IPS solutions
allow automatic or semi-automatic selection of response mech-
anisms when certain attacks are detected. Examples include
TCP session termination as soon as suspicious packet payloads
are detected in the monitored protocol stream.

In many cases (e.g. Snort Inline [Sno07]), the reaction itself
is coded in the detection signature that has been specified
prior to the deployment of the system. Thus, this can simply
be viewed as a suggestion of the signature writer. However,
in these cases, there is no dynamic on-line estimation of
the response involved. In high-assurance environments, this
static approach of selecting response measures is obviously
not appropriate.

IV. THE GRAPH MODEL

In this section, the graph based model for estimating re-
sponse metrics is discussed and some results for example sce-
narios are presented. Here, we restrict ourselves to first discuss
availability as one important and representative objective of IT
security. In section V, a potential way of extending the aproach
to e.g., confidentiality, integrity, and authenticity, is proposed.

A. Resources, and Availailabilities

As already suggested by Toth and Kruegel [TC02], our
model is based on properties of resources. The set of re-
sources is furtheron denoted as R. Resources can either be
service instances (instances of a service provided by hardware,
operating system, applications or network services) or users.
The respective sets are furtheron denoted as S and U with
R = S ∪ U and S ∩ U = ∅

Concerning availability, we observe different kinds of de-
pendencies between resources. The users depend on applica-
tions and services within the network to conduct a certain
mission – otherwise the network would be completely useless
for them. On the other hand, applications often rely on other
applications and services, such as many network communi-
cation systems are depending on the availability of directory
services and of the network transport service itself.

We assume that every resource r ∈ R of a system to be
secured has a certain availability, expressed as a value A(r) ∈



[0, 1] E.g. if a router is able to handle only 10% of the traffic
it was designed for, its current availability is denoted as 0.1.
There intuitively is a lower bound for totally inoperable service
instances and an upper bound for instances which operate with
full capabilities (i.e. operate fully as designed).

A current availability value of a resource can be both inher-
ent, if it is indicated by a diagnosis system (NMS, IDS/IPS),
and a result of the propagation of changed availabilities of
other resources the currently considered resource depends on.
Thus, we assign an intrinsic availability value AI(r) ∈ [0, 1]
and a propagated availability value AP (r) ∈ [0, 1], so that
they are statistically independent from each other. We define
the resulting availability as

A(r) = AI(r) ·AP (r) (1)

to every resource r ∈ R. The former one expresses the
availability of the instances inner functionalities and the latter
expresses a combination of the availabilities of the resources
r depends on.

For an edge (r, s) ∈ E, a value A(s) > 0 indicates that
r has direct accessibility to s (i.e. without other resources as
mediators). If (r, s) /∈ E or A(s) = 0, there is no direct access
possible from r to s. If there is a path (r1, r2), . . . , (rn−1, rn)
with (ri, ri+1) ∈ E ∧ A(ri) > 0 ∀r1 �= . . . �= rn ∈ R, then
rn is indirectly accessible for r1.

B. The Dependency Graph

A dependency graph of a system with the set of resources
R is a directed graph Ĝ = (R, Ê) with Ê ⊆ (S×S ∪U ×S).
Ĝ contains an edge (r, s) whenever a resource r depends on
the resource s concerning its availability. In other terms, r
needs accessibility to s. The edges in Ê are again labeled
with the subjective weight w(r, s) of resource s for r.

Fig. 1 depicts the dependency graph of an arbitrary Voice-
over-IP (VoIP) application and its different sub-compontents
(e.g. recording/replaying, buffering, encoding/decoding, send-
ing/receiving, session management) from access points and
subsystems of the operating system, its hardware drivers and
finally the hardware itself.

When modelling multiple systems in a network, we observe
different classes of dependencies between the resources. The
first class covers mandatory dependencies, where the avail-
ability of a resource r is immediately affected when either
the availability or direct accessibility of the resource r which
it directly depends on is limited. All dependencies from the
example in Fig. 1 are mandatory, e.g. if the audio hardware
is only available up to a limited extent, the record/replay
components are affected. The set of resources on which a
resource r depends on mandatorily is denoted asR (1)(r) ⊂ R.

Other classes of dependencies to which r may belong
include:

• Alternative (denoted as R(2)(r) ⊂ R): The availability of
a resource r is immediately affected when the availability
or direct accessibility of all resources it directly depends
on is limited. If at least one of these resources is fully
available, r is fully available as well. An example is
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Fig. 1. Dependency Graph of a VoIP application, the operating system and
hardware components. Edges indicate mandatory dependencies between the
connected nodes with a weight of one.

the dependency of a web content provider from multiple
server hosts on a webserver cluster, where one server is
enough to provide the content.

• Combined (denoted as R(3)(r) ⊂ R): The availability of
a resource r is immediately affected when the availability
or direct accessibility of all resources it directly depends
on is limited. r is as available as the average of these
resources. An example is a user who simultaneously
depends on a navigation system and on a voice com-
munication application.

• m-out-of-n (denoted asR(4)(r) ⊂ R): The availability of
a resource r is fully given if at least m from n resources
r depends on, are fully available and directly accessible.
An example is a distributed filesystem, where a given
number of storage entities needs to be accessible.

• Indirect (denoted as R(5)(r) ⊂ R): The availability of a
resource r is immediately affected when the availability
or direct accessibility of at least one resource it directly
or indirectly depends on, is limited. An example is the
dependency of an instance of an IP transport service
(including routing and forwarding) from the other in-
stances in the network. The more instances are directly or
indirectly (with other instances as mediators) accessible,
the better is the coverage of the network.

Fig. 2 depicts the availability dependencies of a mobile
adhoc network (MANET) with three identical nodes which
consist of instances of basic hardware/operating services (OS),
MANET networking/routing services (Network) and two ap-
plications, namely a multicast Voice-over-IP (VoIP) and a
fully meshed Command and Control System (C2S). Manda-



tory dependency edges are depicted as solid arrows, optional
dependencies as dotted arrows, and indirect dependencies as
dashed arrows. All edges have a weight of one; edge labels
are omitted.

Note that both network and C2S service instances are
comprising multiple nodes on a single host, since their de-
pendencies belong to different dependency classes (e.g. the
local navigation and the communication module for the C2S
nodes). This is not the case for the OS and VoIP nodes.
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Fig. 2. Dependency graph of a simple MANET with three hosts (see text).

In this example, a user is assigned to one single host in this
network and he is depending on both applications to an equal
extent. The networking/routing service instances indirectly de-
pend on all other instances. The C2S communication instances
depend on the other instances in combination. Concerning the
VoIP application, host 1 acts as a multicast VoIP sender, so
the instances on hosts 2 and 3 depend on the VoIP instance
of host 1.
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Fig. 3. Accessibility Graph after DoS attack against networking/routing
service instance #2. Nodes Network2:1 and Network2:3 have a decreased
availability of 0.10 each; all dependent nodes have been updated.

C. The Accessibility Graph

An accessibility graph of a system with the set of resources
R is a directed graph G = (R, E) with E ⊆ (S×S ∪U ×S).
G contains an edge (r, s) whenever a resource r has direct
access to s. Here ’direct’ means that no other resources act
as mediators for the access. Thus, one will not see edges
in our accessibility graph G, that are representing indirect
dependencies in the dependency graph Ĝ.

The nodes r ∈ R of the accessibility graph G are labeled
with their availability A(r), and the edges (r, s) ∈ E are
labeled with the subjective weight w(r, s) of node s for r
(i.e. its relative importantness compared to the other nodes r
depends on).

Fig. 3 shows an example for an attack graph, corresponding
to the above example dependency graph. The network/routing
service instances are connected in a daisy chain. A DoS attack
was launched against the network service on node #2, so that
only 10% of the packets coming from nodes #1 and #3 are
processed, as indicated by a diagnosis system, resulting in a
lowered overall availability value of 0.33.



D. Determining the Resource and Overall Availability

Each time the diagnosis systems indicate a changed avail-
ability of a resource, the availability of resources which
directly or indirectly depend on the changed one, need to
update their values immediately. As mentioned, the propagated
availability values AP (r) need to be updated, the intrinsic
values AI(r) stay as they are as long as there is no indication
for a change.

To incorporate all potential dependencies of a node, we
define the propagated availability, depending on the class of
dependencies, as follows:

1) Mandatory dependencies: To model the fact that the
availability of a resource r cannot exceed the value of
the resources it depends on, the minimum operator has
been chosen:

AP (r) := min
s∈R(1)(r)

A(r, s)

2) Alternative dependencies: To reflect that at least the
availability of one of the resources that r depends on,
is sufficient to be available, the maximum operator has
been chosen:

AP (r) := max
s∈R(2)(r)

A(r, s)

3) Combined dependencies: To model the dependency of
the availability from the average of the other resources,
the arithmetic mean has been chosen:

AP (r) :=

∑
s∈R(3)(r) A(r, s)

|R(3)(r)|
4) m-out-of-n dependencies: To take into account that r

is only fully available if at least m from n resources r
depends on, are fully available and directly accessible,
the operator needs to be as follows:

AP (r) :=

⎧⎨
⎩

1 if ∃a(r) ⊆ R(4)(r), with |a(r)| ≥ m
s.t. A(s) = 1 ∀s ∈ a(r)

0 else

Note that the parameter m needs to be specified, and
the weights w(r, s) need to be identical equal to one.

5) Indirect dependencies: To incorporate all influences of
other resources r depends on equally, the average oper-
ator has been chosen. Note that in this case, the intrinsic
availability of r has not been considered by intention.

AP (r) :=

∑
s∈R(5)(r) A′

P (r, s)

|R(5)(r)|
For direct accessibility – which needs to be respected for

classes #1-#4 – the propagated value of a single graph edge
shall be given as

A(r, s) := w(r, s) · A(s) (2)

where A(s) is the availability of the node s that r depends
on, and w(r, s) ∈ [0, 1] is the subjective weight of s for r.

For access with other resources as mediators (class #5), we
need to determine the availability, depending on whether there
exists a path from r0 := r to rn := s in G:

A′
P (r, s) := max

((r0, r1), . . . , (rn−1, rn))
(ri−1, ri) ∈ E ∧ A(ri) > 0

∀0 < i ≤ n

w(r, s) · A(r1)

(3)
Finally, to quantify the overall availability of the network

in the light of supporting users when conducting a mission,
a corresponding definition is needed. Intuitively, defining the
overall availability as the availability of the service instances
that are immediately needed by the users is useful. So we
define the overall availability as

A(G) :=
∑

u∈U A(u) ·m(u)∑
u∈U m(u)

(4)

where m(u) ∈ [0, 1] is the relative importance of the user
u ∈ U for the common mission, that needs to be defined
beforehand1.

Given that all users gain equal importance (i.e. 1.0) for the
example graph Fig. 3, the resulting overall availability is

A(G) =
3 · 0.33

3
= 0.33

This value reflects that this is a serious attack that results in
a limited value of the network for all application instances to
support the mission.

E. Updating the Accessibility Graph

The idea is to use the availability values that are propagated
to the users as overall quantifiers for the availability of the
network. This definition is intuitive, since all the goals are
aligned to the mission of the users that is supported by the
network.

For each availability changed, the values need to be prop-
agated to all affected resources in the network. For achieving
this, an algorithm with the following properties is needed:

• It needs to capture all affected nodes.
• It terminates, even if there are cyclic dependencies in the

accessibility graph which cannot be precluded.
• It needs to give stable results, i.e. multiple subsequent

applications should yield identical values.

A possibility to fulfil most of the requirements is based on
an inverse breadth-first-search (BFS) in a directed graph:

1: for all nodes r with a changed intrinsic availability AI(r)
or with a new or removed edge (r, s) do

2: enqueue(Q, r)
3: end for
4: for all nodes r from R do
5: determine their shortest distance d[r] to nodes from Q

by performing a BFS, starting from nodes in Q
6: color[r]← WHITE

7: end for

1Currently, inter-dependencies between weights are not considered.



8: while Q �= ∅ do
9: r ← dequeue[Q]

10: for all nodes s from parent[r] do
11: if d[s] ≥ d[r] ∨ (class[r] == USER

∧ color[s] == WHITE ∧ d[s] ≥ 0) then
12: d[r] := d[r] + 1
13: enqueue(Q, r)
14: goto step 9
15: end if
16: end for
17: if color[r] �= BLACK then
18: Calculate AP (r) as defined above
19: color[r] ← BLACK

20: end if
21: if dl < d[r] then
22: A(r) = AI(r) ·AP (r)
23: end if
24: for all nodes s from children[r] do
25: if color[s] == WHITE then
26: enqueue(Q, s)
27: color[s]← GREY

28: end if
29: end for
30: dl ← d[r]
31: end while

This algorithm traverses the accessibility graph, starting at
the nodes with changed availabilities and updates the values
of their children. This behaviour guarantees the completeness
and the termination. The coloring of the nodes indicates their
processing status: BLACK nodes are updated, GREY nodes are
in the process queue, and WHITE nodes are not enqueued.
Cyclic dependencies are ignored during the traversal process.
Therefore, the algorithm works comparable to the software
reliability risk analysis algorithm from [YCA04].

A significant improvement is the roundwise update of
calculated availability values (step 22) as well as postponing
the update of nodes with parents who have a bigger or equal
distance to the start nodes (steps 10-16). This is needed to
process parallel dependency paths in a stable manner.

F. Definition and Example for Reaction Success

To be able to assess properties of a reaction, an accessibility
graph for the system state prior and after the application needs
to be generated (by knowledge about the earlier state and
influenced by the current output of the diagnosis systems).

An example of this pair of graphs is the one from Figs. 3
and 4. The earlier one describes the situation after an attack
and the latter one shows the effects of the applied reaction.
In this case, the reaction is a change of the routing tables on
hosts #1 and #3, so that host #2 that was affected by the attack
in Fig. 3, was separated from the network.

Finally, if we assume that G is the graph we obtain before
the reaction, and G′ after the reaction, the success of the
reaction can be intuitively defined as the change of availability
after the reaction against an attack:

δ1(G, G′) := A(G′)−A(G) (5)
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Fig. 4. Accessibility Graph after separating the attacked host #2 using routing
reconfiguration as a response measure. Edges (Network-Rout 1,Network3:1)
and (Network-Rout 3,Network1:3) have been added instead of (Network-
Rout 1,Network2:1) and (Network-Rout 3,Network2:3), respectively.

Obviously, this metric may also have negative values, since a
wrong selection of response measures might also damage the
network rather than having a positive effect. This matches also
with the intuition.

For the example above, the according availabilities have
been 0.62+0.25+0.62

3 and 0.33, respectively. Thus, the success
of the reaction with its results depicted in Fig. 4 can be
quantified as

δ1(G, G′) ≈ 0.50− 0.33 = 0.17

G. Additional Reaction Metrics

Besides the success of a reaction, other (secondary) metrics
are important for estimating the value of a reaction and for
selecting responses for application, as discussed in section
III. So, our second metric is the effort that is needed for
implementing a reaction.

Thanks to the simple model we use, it is possible to define
the effort of a reaction as the normalized number of resources
(service instances) which need to be modified in order to
implement the reaction:

δ2(G, G′) :=
#of modified instances

|S| (6)

Note that the orientation of the effort metric is different
from the success metric, since a bigger success is ’better’ than
a smaller value, whereas a smaller effort is ’better’ than a
bigger value.



For the example discussed in the last subsection, the effort
was given as the number of network/routing instances that
needed to modify their routing tables. Thus the resulting effort
value was

δ2(G, G′) =
4
38
≈ 0.11

To see the influence of the combination of both defined
metrics, we introduce the example of another possible reaction
for the same attack. As depicted in Fig. 5, it seems to be also
possible to preclude the attacked host #2 from access to the
remote application services rather than separating it from the
network.
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Fig. 5. Accessibility Graph after separating the attacked host #2 using service
exclusion as an alternative response measure. Availability of nodes C2S1:2,
C2S3:2, and VoIP1:2 has been set to zero.

The obtained results for the success and for the effort of this
alternative reaction (resulting in another availability graph G ′′)
are

δ1(G, G′′) ≈ 0.33 + 0.25 + 0.33
3

− 0.33 = −0.3

and
δ2(G, G′′) =

3
38
≈ 0.08

This alternative reaction yields a negative result for the
success metric. The reason is that precluding the attacker

from applications has no impact for the network connectivity.
Thus, concerning availability, the earlier reaction would be
considered the more appropriate solution, even if the estimated
effort is lower than for the alternative.

Currently, definitions for two other important metrics (error-
proneness and durability) using properties of the graphs are
under examination.

V. DISCUSSION

In this stage of developing our approach, many aspects are
under discussion, as the following subsections evince.

A. Advantages and Disadvantages

The graph based approach as described in this contribution
has a number of noteworthy advantages, including a large
degree of intuitivity, the ability to be adapted for differently
scaled and granulated scenarios as well as relatively easy
maintainability. These are basically results of the fact that
the graph model acts as a ’small world’ picture with graph
properties that cover important aspects of the real world system
which is to be protected.

On the other hand, the way to obtain a ’state zero’ graph
and to modify it by creating a mapping from the output of the
diagnosis systems (NMS, IDS/IPS) to the availability values
incorporates potential difficulties, since this mapping must
be created beforehand and needs to have a sufficient degree
of reliability and consistency. However, it seems feasible to
obtain this mapping, as recent experiments have indicated.

Another negative property of our approach is the fact, that
cyclic structures in the dependency and accessibility graphs
cannot be precluded. This is due to the existence of cyclic
dependencies in real world systems. The way we worked
around this problem by breaking up these cycles currently has
the disadvantage that it does match intuitivity only to a certain
extent. We are currently investigating mechanisms for dealing
with cyclic dependencies.

B. Comparison to Plan Recognition Oriented Approaches

Many researchers (e.g. Geib and Goldman [GG01], Yu and
Frincke [YF07]) are focusing on a different approach for
selecting response actions, namely the ’plan recognition’ or
’goal prediction’ type approach. Most of this work focuses
on identifying a hostile agents plan and predicting his further
actions in order to select an appropriate defending strategy.
Approaches of this type aim at obtaining a more holistic view
on attackers.

But modelling attacker plans and goals in our type of situa-
tional graphs would lead to a large complexity when obtaining,
storing and updating the data structures. Additionally, the high
degree of intuitivity of the model disappears, and thus the
ease of maintainability would also be affected. It also would
bring probabilities back to the table which we tried to avoid
on purpose, since probabilistic evaluations would suppose the
NSO to have an expert a priori knowledge of e.g. probabilities
of attack steps. Nevertheless, it is clear that most attacks are
related and/or are part of a plan to achieve a top level goal.



All in all, we believe that putting an appropriately selected
response for observed symptoms in place is still the most
effective measure, since dangerous attackers would probably
not follow predictable plans or standard procedures.

However, plan recognition approaches might be used to
optimize our graph model, e.g. for determining values for
error-proneness and durability metrics.

C. Extending the Approach: From Availability to Confiden-
tiality

As the whole description of the approach was focused on
availability, a way to extend it to other IT security objectives
is needed. We propose to add more layers to the dependency
graph which each comprise a subgraph that represents e.g., the
degree of integrity. To reflect this, each layer subgraph needs
to have an identical set of nodes which are associated with the
current integrity values of the respective resources.

Intuitively, most of the security properties rely on others.
Thus, additional inter-layer dependencies may be introduced in
the multi-layered graph, such as depicted in Fig. 6. Intuitively,
all higher layer nodes maintain dependencies to the respective
nodes on the lowest (availability) layer, since properties like
integrity and confidentiality of a resource may only be verified,
if the resource itself is available.
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Fig. 6. Multi-layered dependency graph for expressing multiple IT security
relevant resource properties.

VI. CONCLUSION AND FURTHER WORK

This contribution proposes a graph based approach for
estimating properties of reactions for given attacks against
computer systems and networks. Thus, the approach can be
used for both quantifying the effects of a response measure
after its application and for choosing the most promising
alternative of a set of available response measures. For the
time being, only availability as one of the most important IT
security properties is in the focus of the modelling approach.
For the observed system, a dependency graph reflects the inter-
dependencies of the system resources (service instances and
users). For the current state of the system, an accessibility

graph depicts the momentary availabilities of the resources
and their accessibilities for each other. The accessibility graph
is a result of the output of different diagnosis systems, such
as intrusion detection or network management systems. An
update algorithm calculates the effects on all directly or
indirectly dependent resources and also on the users.

By comparing properties of accessibility graphs prior and
after a reaction has been applied to the system, pragmatically
important aspects like response success, application effort,
error-proneness and durability can be quantified. Different
examples have underlined the applicability of this approach
in different scenarios with different granulatities.

This contribution also discussed advantages and disad-
vantages of the approach, especially in the light of other
relevant work. Several aspects to be investigated further have
been pointed out. These future work areas include graph
properties for the error-proneness and durability metrics and
plausibility investigations for the arithmetic operations that
reflect the inter-resource dependencies. The update algorithm
will be analyzed, optimized and extended for handling cyclic
dependencies, up to a certain extend. Additionally, we plan to
implement and evaluate the model in a MANET environment
with precisely defined properties.
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