Meta IDS Environments:
An Event Message Anomaly Detection Approach

Jens Tolle, Marko Jahnke, Michael Bussmann, Sven Henkel
Research Establishment for Applied Science (FGAN)
Computer Networks Dept. (FKIE/KOM)
Neuenahrer Str. 20, 53347 Wachtberg, Germany
{toelle| jahnke |bussmann|henkel }@fgan.de

Abstract

This paper presents an anomaly detection approach
for application in Meta IDS environments, where locally
generated event messages from several domains are cen-
trally processed. The basic approach has been successfully
used for detection of abnormal traffic structures in com-
puter networks. It creates directed graphs from address
specifications contained within event messages and gen-
erates clusterings of the graphs. Large differences between
subsequent clusterings indicate anomalies. This anomaly
detection approach is part of an intrusion warning sys-
tem (IWS) for dynamic coalition environments. It is de-
signed to indicate suspicious actions and tendencies and
to provide decision support on how to react on anoma-
lies. Real-world data, mized with data from a simulated
internet worm, is used to analyze the system. The results
prove the applicability of our approach.

Keywords: Meta IDS, Anomaly Detection, Event Mes-
sages, Graph Clustering

1. Introduction

Networks of cooperating partners are often con-
nected with each other using the public internet. There-
fore, these connections are exposed to many different
threats. This paper is focused on an anomaly detec-
tion approach for event messages in an architecture of
an intrusion warning system for dynamic coalition en-
vironments.

Within the intrusion warning system, anomaly de-
tection methods are used to detect potential threats
which are still unknown and whose signatures are not
yet added to misuse databases.

The paper is organized as follows: Section 2 presents
basics on cooperating intrusion detection systems and

approaches of other researchers. Section 3 describes the
structure of our system, followed by section 4 on our
anomaly detection approach. Section 5 presents expe-
riences with our approach when used with real-world
data. The paper closes with some concluding remarks
and a view to future work.

2. Related Work

Several intrusion detection approaches have been
proposed, some based on sets of rules or specifica-
tions to separate normal from abnormal system behav-
ior (e.g. [1], [2]), others learning normal system status
during operation (e.g. [3], [4]).

Some network based anomaly detection approaches
use traffic characteristics (e.g. [5]), others inspect pay-
load of the network traffic (e.g. [6]). [7] uses an anomaly
detection approach to detect worms propagating via
email.

Graph based approaches to intrusion detection have
been used since the beginning of the work on the Graph
Based Intrusion Detection System GrIDS [8] which also
looks at network traffic. This system already contained
methods for the detection of worms.

In contrast to approaches which use sensor data as
input, others look at event messages or audit trails,
such as alert correlation techniques using data min-
ing (see [9]) or they are based on more formal models
of the network and its vulnerabilities (e. g. [10]).

Our approach applies graph based anomaly detec-
tion techniques to a multi-source event message flow,
where no assumptions can be made on the message
sources nor on the domain policies they are enforcing.

3. System Structure

Figure 1 presents the general architecture of our
IWS prototype. It is based on our IDS infrastructure

Published in: Proceedings of the IEEE International Workshop on Information
Assurance, University of Maryland, USA, April 2005.

Jahnke

Jahnke
Published in: Proceedings of the IEEE International Workshop on Information
Assurance, University of Maryland, USA, April 2005.

framework which provides generic pluggable compo-
nents.

~— Data Flow
- -- Control Flow
- \Waming Flow

Anomaly
s
Console
cul [Message -]
Dispatcher ﬁ
Filters Filters

Meta-IDS
Gateway

Local Se- ..
curity Toal

[Local se-] .. [Local Se-]
Domain B

curity Toal curity Tool Domain A

Abb. 2: Feinstruktur des IVWS filr Koalitionsumgebungen

Figure 1. System structure

The main task of an Intrusion Warning System is to
collect and process information about potentially secu-
rity relevant events from systems locally installed in the
domains of the coalition environment. One possible ar-
chitecture for such a system is the so-called Meta IDS
which relies on centralized components for data stor-
age and analysis. The term Meta is derived from the
fact that an additional hierarchy level is introduced
to conventional distributed IDS. For our application,
we extended the Meta IDS architecture by introduc-
ing Fall-back Consoles and domain specific Gateways.
The data model for event messages is given by the ID-
MEF recommendation [11] of the IETF IDWG. Ac-
cordingly, messages are encoded as XML documents
and transmitted over network links via the IDXP pro-
file for the BEEP protocol [12]. Any security tool that
uses these protocols can be deployed to provide input
to the IWS.

The Meta IDS console component, processes all mes-
sages received from different domains. It contains infor-
mation storage capabilities as well as different message
filtering and processing modules. The central analyzing
component of our Meta IDS console is the anomaly
detector which is described in the next sections. For
avoiding a Single-point-of-failure, a fallback instance of
the console is running in the background. In the case of
system component or network failures, it takes over all
functionality from the main console. Different GUIs are
provided for controlling the system, for real-time dis-
play of incoming messages and for offline database in-

spection.

Meta IDS gateways are under the control of the ac-
cording domain. Their main task is to collect and pre-
process all event messages from the event generating se-
curity tools that are deployed within the domain. The
processed messages are sent over the network to the
central system components for further analysis. The
following message processing steps can be configured to
be performed within a gateway, using extended XSLT
[13] processors:

e FEvent Normalization: Messages from different se-
curity tools, expressing the same fact using differ-
ent representations, can be transformed into the
same format.

e Information Sanitizing: To respect the information
sharing policy of the domain, messages can be san-
itized, i. e. sensitive information contained within
messages can be anonymized or just stripped.

e Redundancy Filtering: Multiple “similar” messages
can be represented by summary messages; the sim-
ilarity properties can be configured in a very flex-
ible manner.

e Offtine Detection of pre-defined FEvent Combi-
nations: Correlated sets of event messages,
pre-defined by according rule sets, can be de-
tected directly in the message stream (i.e. without
accessing an event database).

For more information on event message processing
in Meta IDS environments, please refer to [17].

4. The Anomaly Detection Approach

Before describing the anomaly detection ap-
proach used in our system, it is important to note
that anomaly detection approaches have some typ-
ical features. One major challenge is the risk of
false alarms (false positives) and unreported seri-
ous events (false negatives). This holds for the method
described in this paper as well. A careful selec-
tion of parameters according to the scenario is nec-
essary to keep both false positive and false negative
rates low. As usual, intrusions do not necessarily re-
sult in an observable abnormal system behavior, and
observed abnormal system behaviour is not necessar-
ily caused by an intrusion.

Therefore, the system described below is not suited
as a stand-alone intrusion detection system. It is in-
tended to assist the other intrusion detection methods
— mainly misuse detection approaches — used in the
different domains. The benefit of the usage is an in-
dication of the health of the supervised networks and

the expectation to discover some kinds of yet unknown
threats and threats which are not considered in signa-
ture databases of misuse detection systems.

4.1. Basic Ideas

The combination of event messages from different
domains is intended to improve detection capabilities.
One of the major challenges of anomaly detection ap-
proaches located in a centralized Meta IDS console is
the fact, that almost no assumptions on the underly-
ing event generating systems can be made.

It is difficult to make assumptions on the type, the
quality, or the frequency of event messages coming
from the domains. Obviously, the quality and quan-
tity of the incoming event messages depends strongly
on the system configuration. One of the main reasons
for this is the local administration of the domains and
the systems generating the event messages. The local
domain security staff is allowed to choose the level of
detail of the emitted event messages. This may lead
to anonymization of event messages, omitting details
or filtering of selected event messages. The domains
may use different systems and different products. A re-
sult of this is the fact that different domains may send
event messages differing in form and quantity as a re-
action on the same event.

Nevertheless, the collected event messages can be
used to detect abnormal system behaviour. The basic
idea for surveying the current system state and for the
detection of deviations (anomaly detection) is the con-
tinuous monitoring of the incoming event messages.

The method described in the following subsections
was originally developed for monitoring network traffic
and for detecting network traffic anomalies. The basic
idea is described in [5].

4.2. Traffic Structure Recognition

In most networks, the typical structures of network
traffic are quite stable. This does not mean that fun-
damental traffic parameters like data rates are stable.
It is well known that these parameters are extremely
bursty.

We concentrate on observing the general structure
(communication pattern) of network traffic, and fun-
damental changes in these structures are unusual. This
allows to gather the traffic in regular intervals (this
can be done using monitoring devices or traffic sniffer,
in switched networks it is necessary to use a monitor-
ing port of the switch) and to store it as a traffic ma-
trix. This matrix can be seen as a graph G = (V, E).
Nodes v; € V of graph G represent communicating de-

vices while edges e; ; € E represent the communication
between device v; and v;. The edges are weighted ac-
cording to the intensity of the communication during
the measurement period.

Those graphs can be partitioned into subgraphs us-
ing graph clustering algorithms. The resulting cluster-
ing of the graph represents the typical communication
structure of the monitored network.

Clustering means finding a mapping of each node to
one out of a set of several clusters. The algorithm takes
a data set of inputs and divides them into classes. This
exclusive classification is also called partitioning of the
object set. Each object of an object set is assigned to
exactly one cluster. In a more formal description, clus-
tering is the partitioning of a graph G = (V, E) into
cluster

e C;CV,C; #0,0 <i<n—1 with
L] COUC’lLJ...UC’n_l:Vand
e V0O<i,j<n—1,i#j:CinC;=0.

This means that each cluster C; is a subset of nodes
of the node set V. No cluster is empty, and all the nodes
belong to exactly one of the clusters.

In this case of application, a clustering algorithm
which does not demand a predefined and fixed num-
ber of clusters as an input parameter is needed. Suit-
able clustering algorithms have to detect an appropri-
ate number of clusters on their own.

Sudden variations of the clustering structure are re-
garded as anomalies. To discover these kind of varia-
tion, metrics are needed. Those metrics have to rate
similarities (or dissimilarities) of consecutive cluster-
ings R; and R¢y1. The method is not only used to com-
pare current clusterings with their direct predecessors
but with a larger set of preceding clusterings. This al-
lows the detection of regular variations in traffic struc-
ture. Those variations may be caused by tasks which
are executed at regular intervals and cause significant
amounts of network traffic differing from the typical
network traffic structure. Therefore, these changes in
structure should not be regarded as abnormal system
behaviour.

4.3. Application to Event Message Context

This method used in the area of traffic structures
needs some adaptations for the event message model
presented in this section. Most of the event messages
arriving at the Meta IDS are suitable for building a
graph. All the event messages containing detailed in-
formation on the destination (the attacked system) and
the origin (assumed originator) belong to this category.
Such a message generates a new edge e in the set of

edges e of our message graph G. The edge e connects
the nodes representing the origin vorigin and the desti-
nation vgestination -

Depending on the level of detail of the event mes-
sages, some gateways may just indicate the affected sys-
tem but not specify the (assumed) originator. Depend-
ing on the configuration of the ID systems and gate-
ways this information may not be available. In order
to consider these event messages in the event message
graph, a pseudo node representing these event message
types may be assigned to the domains. An edge be-
tween such a pseudo node and a node representing an
affected system represents an event message not con-
taining an originator address.

oo ee
OO @@ @<

e
O0ee® OO&<C
o ©0ee

= Py

Figure 2. Graph representing the event message
structure

The resulting graph describes the typical structure
of the incoming event messages.

Figure 2 shows an example of a typical event mes-
sage structure graph. Each node of this graph repre-
sents a unique IP address. Two nodes are connected
via an edge if there is at least one entry in the event
message database concerning those IP addresses dur-
ing an analysis interval. The analysis interval used here
is 300 seconds.

The circular structures are generated by a set of
event messages, where a lot of different IP addresses
are the (assumed) originators and one address is al-
ways the destination (imagine a distributed attack or
an attack with randomly chosen fake source addresses).

In this case, the edges point to the central node. Similar
structures are generated, when one originator accesses
a lot of other nodes (imagine a vulnerability scan). In
this case, the edges start at the central node and point
to the outer nodes.

Figure 3. Idea: Graph with additional port nodes
and edges

A possible enhancement of this method with no in-
depth description in this paper is the additional consid-
eration of extra information contained in parts of the
event messages.

Whenever event messages contain information on
services (e.g. port numbers), it is possible to enhance
the event message graph as follows:

Figure 4. Example graph with additional port
nodes and edges

For each event message indicating an activity affect-
ing addresses aj, a» and service s, an additional node
representing the service s and two additional edges
from a; to s and from as to s are added. The figure
3 illustrates this concept, figure 4 shows an applica-
tion to real world data. This enhancement often allows
easy recognition of affected services in case of abnor-
mal system behaviour.

Figure 5. Clustered graph representing the typi-
cal message structure

Figure 5 presents the result of an application of a
graph clustering method to the graph presented in fig-
ure 2. Again each node represents an IP address. Some
of the less important edges are removed. This graph
now represents the typical event message structure.
This structure and its deviations are quite stable in
longer time-frames.

Variations from the typical message structure are re-
garded as an anomaly. Those anomalies are reported as
warning messages. The comparison measures used for
anomaly detection in network traffic structures can be
used in this domain as well.

The difference (or distance) between two clusterings
of a set of objects is calculated as follows. The way of
calculating is inspired by the hamming distance, giv-
ing a value indicating the difference of two bit strings as
the number of elementary operations needed to trans-
form one into the other. In the same manner, our dis-

tance d is defined as the number of elementary opera-
tions to transform a clustering $; into another cluster-
ing 2. Elementary operations are splitting of a par-
tition, combining two partitions and moving a subset
from one partition to another. Note: The third elemen-
tary operation is not really necessary (and therefore el-
ementary), because it can be replaced with a sequence
of the first two operations.

The formula used in our anomaly detection ap-
proach to measure the distance of two clusterings is:

d(R,R2) =

H(P1,) € Ry xR | LN Py # 0}

— Y min{|Ry el R}

PeRi1UR2
In this formula, it holds R; U Ry := {P € 2M \ (|

a€ PNIP' e RiURy:be P = be PVa,be M}

and Ry = {P €2\ 0 |IP eR: P =P nNM'},
where 2™ denotes the power set of M.

P; is a cluster from the clustering ®;, i € {1,2}. The
formula above is a compact way of counting the min-
imum number of elementary operations to transform
the first clustering $; to $,. The first part of the for-
mula counts the number of tuples of clusters of consec-
utive clusterings containing identical nodes. This num-
ber is an upper limit for the number of necessary op-
erations. The second part of the formula removes un-
necessary elementary operations.

Other means of calculating the distance between two
clusterings were developed, e.g. based on the number
of nodes belonging to the same cluster in one cluster-
ing and to different clusters in the other clustering, or
based on a kind of correlation between two clusterings.
These methods are also suitable for the purpose of de-
tecting anomalies in the structure of event messages.

5. Results

The implementation was tested with original event
message data from one of our networks. Event messages
from different security tools (including snort [1], log-
surfer [16], examining virus scanner, firewall and other
log files) were combined in the Meta IDS and analyzed
by the anomaly detection instance.

The structure of our system allows real-time analysis
of the incoming event messages. For reasons of simplic-
ity and in order to carry out tests concerning the sensi-
tivity of the anomaly detection methods, we used sev-
eral databases of recorded event messages, each span-
ning one week. The results presented in the next sub-
sections are outcomes from one of these databases.

5.1. Worm spreading

The spreading of a worm is a well-known danger-
ous threat. If newly discovered vulnerabilities are ex-
ploited, then signature databases of misuse detection
systems need some time to be updated. The distribu-
tion of sensors in our Meta IDS allows the early detec-
tion of this kind of incidents.

Note: Intended use of this system is in coalition en-
vironments. On the one hand, combining event mes-
sages of several domains can result in faster detection
of potential threats. On the other hand, this method al-
lows to warn the other domains which are possibly not
protected against a present attack. This makes it use-
ful to analyze firewall logs even if the own domain is
not vulnerable to an attack due to their firewall con-
figuration.

In this example, we focus on active worms. In or-
der to analyze our system, we merge real sensor data
from different systems with artificially generated fire-
wall log messages. These firewall log messages are gen-
erated using a worm simulator we built for analyzing
worm spreading behaviour, pretending worm spread-
ing outside the protected domains.

The firewalls of the domain’s networks deny access
and log attempted access to non-existent or blocked
machines inside the protected networks. Input param-
eters of our worm simulator are as follows:

e The worm spreading mechanism. In this case, the
spreading mechanism of the worm CodeRed v2
(see [15]) is used. The choice of the spreading
mechanism has influence on the way a worm in-
stance generates addresses of potential new vic-
tims.

e The number of infectable systems. This value has
strong influence on the spreading time. We use a
value of 360000 infectable systems. This is a realis-
tic number of infectable systems, because it is the
approximate number of hosts infected by CodeRed
v2. In the future, the number of systems infected
by worms could even be higher. A worm attacking
an unpatched vulnerability in a widely deployed
server software, e.g. a web server, could result in
disastrous numbers of infected hosts.

e And in addition: timeout values, if a computer
does not answer or is not reachable; number of
simultaneous threads looking for infectable hosts;
and some more parameters of minor importance.

The simulator contains a supplementary model on
the distribution of reachable IP addresses, the region
where the corresponding nodes are located and approx-
imated signal delays between network nodes.

5.1.1. Application of the Simulator The param-
eters chosen for the spreading of a worm result in ap-
proximately 7600 artificially generated firewall log mes-
sages in addition to 166000 real firewall log messages in
the database of several days of life event message data.

These generated log messages are distributed to ap-
proximately 96 analysis time-frames (8 hours x 12
time-frames/hour).

The typical structure of the spreading of a worm
leads to an extremely low number of additional event
messages in the beginning. This early phase of the life-
time of a worm is hard to find, because the total num-
ber of eye-catching events is low. Here the Meta IDS
approach helps in combining event messages from sev-
eral domains.

Figure 6. Worm spreading, start

5.1.2. Illustration of Worm Behaviour The
graph in figure 6 presents the situation when the
first infected node from the outside tries to contact
a node inside the protected network. The nodes rep-
resenting the IP addresses of infected systems are
marked in figures 6 to 9. This is done manually to il-
lustrate the behaviour of the worm, it is not part of
the anomaly detection system.

In figure 6, you see exactly one node being the first
contact between the protected network and the worm.
One out of 194 event messages is caused by the worm
in this time-frame.

cocoooee

.............. @@

o Ooeee
S OO0 OD@® o -
(..’,J ’;9 G;;“)_(‘_"D (":D_G"_D (39{;1:) S &

- — = — @
2 e &®

)

Figure 8. Worm spreading, after two hours

Figure 7 presents the situation one hour (or twelve
time-frames) later.

The amount of infected nodes trying to contact the
protected network increased. Seven nodes tried to con-
tact systems behind the firewall. The total number

of event messages decreased to 181 during this time-
frame.

€ ED @

oeeee e

Er Y

= — S ®OOO®
ee o2 -

‘ .A E-@ ©©
oe _©008 YOS e

Figure 9. Worm spreading, after three hours

Figure 8 illustrates the situation two hours after the
first contact between an infected node and the firewall.
The number of infected nodes trying to reach systems
behind the firewall has drastically increased.

One hour later, three hours after the first contact
with the worm, the situation is even worse. See figure
9.

Two hours after the start of the worm, 185 event
messages arrived during the time-frame. This number
decreased to 179 messages one hour later.

This change in the structure of incoming event mes-
sages is easy to see for a human observer. An early and
automatic detection of this kind of variations would be
very helpful. Thus, the next section describes the ap-
proach to automatic detection of abnormal changes in
the event message structure.

5.1.3. Automatic Detection In order to detect ab-
normal changes in the structure of the event messages,
we calculate the distance of (sets of) consecutive clus-
terings. A visual inspection of the clusterings (for ex-
ample the left hand sides of figures 6 and 8) does not
indicate strong deviations in the event message struc-
ture. This seems to be obvious, because the mapping
of event messages to our graph mainly adds one-to-one
connections.

Cluster differences

1200

1000 N

800 -
600 -

difference

200 H

400 Mg YL i b e
¥ A"

1 101 201 301 401 501 601 701 801

timeframe

Figure 10. Cluster differences

When considering information concerning the num-
ber of new and missing nodes when starting a new time-
frame, the distance calculation delivers a strong warn-
ing when the worm is spreading. We use an estima-
tion of standard deviation of distances between con-
secutive graph clusterings. When the distance exceeds
the smoothed average plus a factor times deviation, a
warning is generated.

The graph in figure 10 presents the distance values
between consecutive clusterings. The increase of dis-
tances during the worm activities is easy to see. The
graph contains both the clean real-world data (lower
values during worm attack) and the distance values in-
cluding the worm attack (peak between time-frames
300 and 400).

5.2. CRC32

The CRC32 attack (see [14]) is an attack against
the Secure Shell ssh which is widely used for encrypted
communication. Older versions are vulnerable to a spe-
cial kind of attack. The data base of event messages
contains data about an attempted attack on a system
under supervision. This attack consisted of a larger
number of data packets from the attacker to the at-
tacked node. Each of those packets was reported with
an event message, since the potentially dangerous pay-
load contains typical NoOp instructions.

The figure 11 shows the graph during the at-
tack. The typical structure of the event messages
has not changed, but the event messages concern-
ing the marked nodes have shown an abnormal in-
crease in frequency of occurrence. Therefore, this
was regarded as anomaly and reported. The color-
ing of the affected nodes is updated automatically
when thresholds concerning the weights are ex-
ceeded in order to help the administrator to locate

Figure 11. Event message structure during
CRC32 attack

security incidents (The visualization of the event mes-
sage graphs and of the clusterings is performed using
Graphviz, see [18]).

Results of cluster comparison

2500

© 2000)
[I
> 1500 v
® N |
S 1000
@
T 500
0 T —T — — —
1800 1850 1900 1950 2000

timeframe

Figure 12. Results of cluster comparison

In this case, the basic comparison of consecutive
event message graphs or clusterings is not sufficient to
detect these kind of attacks. See figure 12. There is only
a slightly higher distance value when the attack was at-
tempted (time-frame 1886). Therefore, other methods
have to be used.

Node activity

6000
5000 - s
4000 -
3000
2000

1000
°
01 _@® o o0 © o eele & |
0 500 1000 1500 2000
timeframe

increase (percentage)

Figure 13. Activity of nodes

Figure 13 presents an analysis of the activity of
nodes. A node n is hyper-active, if a noticeable num-
ber of event messages with the node n as assumed ori-
gin or destination are received during one time-frame.
If the system discovers an activity which is larger than
a fixed value a times the average of the last observa-
tions, than a log entry in an activity log file is pro-
duced. The graph in figure 13 uses a value of a = 100.
Each dot in this figure represents one noticeable activ-
ity. During the analysis time, we had 94 observations,
indicating a larger number of event messages concern-
ing a total of 16 IP addresses (source and destination).
Most of the dots indicate just a marginal increase in
the number of incoming event messages per time frame.
The sudden increase in event messages concerning the
two stations being involved in the CRC32 attack is easy
to see.

6. Conclusions and Further Work

This paper has presented an approach for detect-
ing anomalies in the event message flow of an intrusion
warning system for dynamic coalition environments. It
generates graphs from the information about assumed
source and target nodes of an action, which is con-
tained within event messages. The algorithm builds
clusterings on the graphs for every time-frame. The
comparison of clusterings of one graph for subsequent
time-frames deliver different distance values; sudden in-
creases of these distance values indicate an anomaly.

According to the requirements for its application,
the detection algorithm has the following properties:

1. It is possible to detect largely spread activities like
internet worms if traffic related event messages (e.
g. from packet filters / firewalls) are available.

2. Activities which cause an unusual number of mes-
sages of the same type are also detected (e. g. the
SSH CRC32 NoOp attack).

3. Generally, the approach is independent of the
event message generating domain-specific security
tools, their configuration and the security policy
they are enforcing.

For the near-term future, some important things need
to be examined further:

e How reliable is the determination of the reason for
an anomaly?

e What information can be extracted from an
anomaly in order to provide decision sup-
port on how to react?

e What happens, if parts of the input messages are
sanitized (e.g. anonymized), which might be the
case for different application contexts?

These questions will be examined in a multi-domain
evaluation environment, operating with real-world
data.

7. Acknowledgements

The authors would like to thank Alexander Rink,
who was involved in this research work during his time
as a master candidate at University of Bonn, Germany.

References

[1] Snort (Open Source Network Intrusion Detection
System) homepage — http://www.snort.org

[2] V. Paxson. Bro: A System for Detecting Net-
work Intrudersin Real-Time, Computer Networks,
31(23-24), pp. 2435-2463, 1999.

[3] Next-Generation Intrusion Detection Expert Sys-
tem (NIDES) —
http://www.sdl.sri.com/projects/nides/

[4] Event Monitoring Enabling Responses to
Anomalous Live Disturbances (EMERALD)
—http://www.sdl.sri.com/projects/emerald/

[6] J. Télle, C. de Waal. A Simple Traffic Model Using
Graph Clustering For Anomaly Detection. Proc. of
Applied Simulation and Modelling (ASM) Crete,
Greece, June 2002.

[6] K. Wang, S. J. Stolfo. Anomalous Payload-based
Network Intrusion Detection, Seventh Interna-
tional Symposium on Recent Advances in Intrusion
Detection (RAID), September 2004.

[7] A. Gupta, R. Sekar. An Approach for Detect-
ing Self-Propagating Email Using Anomaly De-
tection. Sixth International Symposium on Recent
Advances in Intrusion Detection (RAID), Septem-
ber 2003.

(8]

[10]

[11]

S. Staniford-Chen, S. Cheung, R. Crawford, M.
Dilger, J. Frank, J. Hoagland, K. Levitt, C. Wee,
R. Yip, D. Zerkle. GrIDS — A Graph-Based In-
trusion Detection System for Large Networks. The
19th National Information Systems Security Con-
ference, 1996.

W. Lee, S. J. Stolfo. Data Mining Approaches for
Intrusion Detection. 7th USENIX Security Sym-
posium, January 1998.

B. Morin, L. Mé, H. Debar, and M. Ducassé. M2D2:
A formal data model for IDS alert correlation. vol-
ume 2516, page 115, 2002.

D. Curry, H. Debar. Intrusion Detection Message
Exchange Format — Data Model and Extensible
Markup Language (XML) Document Type Defi-
nition. IETF Internet Draft draft-ietf-idwg-idmef-
xml-11.txt, January 2004. IETF IDWG.

M. Rose. RFC 3080: The Blocks Ex-
tensible Exchange Protocol Core.
http://www.ietf.org/rfc/rfc3080.

W3C. W3C Recommendation 16: XSL
Transformations (XSLT) Version 1.0. -
http://www.w3.org/, 1999.

CRC32 vulnerability —
http://www.kb.cert.org/vuls/id/945216

CERT information on Code Red worm —
http://www.cert.org/advisories/CA-2001-
23.html

Logsurfer homepage —
http://www.cert.dfn.de/eng/logsurf/

M. Jahnke, M. Bussmann, S. Henkel, and J. Télle.
Components for Cooperative Intrusion Detection
in Dynamic Coalition Environments. NATO/RTO
IST Symposium on Adaptive Defence in Unclassi-
fied Networks, April 2004.

Graphviz homepage —
http://www.research.att.com/sw/tools/graphviz/

